Osteoporosis, a common skeletal disorder characterized by diminished bone density and strength, poses a significant public health challenge worldwide, particularly among the aging population. This abstract explores the rising importance of omega-3 fatty acids in the management and preventing of osteoporosis. This comprehensive review delves into the molecular process underlying the effect of fatty acids on the metabolism of bone. Preclinical and clinical research data elucidates the beneficial effects of omega-3 fatty acids on bone density, bone formation, and the reduction of bone resorption. Additionally, the anti-inflammatory characteristics of these fats were examined, shedding light on their potential to mitigate the prolonged low-grade inflammation related to osteoporosis.
He W, Goodkind D, Kowal P. US Department of Commerce, Economics and Statistics Administration. Census.gov. March 2016.
Chondrocyte – An overview. Science Direct Topics. Available from: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecularbiology/chondrocyte. Accessed on: July 2, 2019.
Osteoporosis Symptoms and causes - Mayo Clinic. Available from: https://www.mayoclinic.org/diseases conditions/osteoporosis/symptomscauses/syc-20351968. Accessed on: June 29, 2019.
Guo D, Zhao M, Xu W, et al. Dietary interventions for better management of osteoporosis: An overview. Critical Reviews in Food Science and Nutrition 2023;63(1):125–144. DOI: 10.1080/10408398.2021.1944975.
OSHK Task Group for Formulation of 2013 OSHK Guideline for Clinical Management of Postmenopausal Osteoporosis in Hong Kong; Ip TP, Cheung SK, et al. OSHK guideline for clinical management of postmenopausal osteoporosis in Hong Kong. Hong Kong Med J 2013;19 Suppl 2:1–40. PMID: 23535738.
Tartibian B, Hajizadeh Maleki B, Kanaley J, et al. Long-term aerobic exercise and omega-3 supplementation modulate osteoporosis through inflammatory mechanisms in post-menopausal women: A randomized, repeated measures study. Nutr Metab (Lond) 2011;8:71. DOI: 10.1186/1743-7075-8-71.
Vanlint SJ, Ried K. Efficacy and tolerability of calcium, vitamin D and a plant-based omega-3 oil for osteopenia: A pilot RCT. Maturitas 2012;71(1):44–48. DOI: 10.1016/j.maturitas.2011.10.004.
Barva Evia JR. Marcadores del Remodelado Óseo y Osteoporosis. Rev Mex Patol Clín 2011;58(3):113–137.
Díaz-Castro J, Kajarabille N, Pulido-Morán M, et al. Influence of omega-3 fatty acids on bone turnover. Omega-3 fatty acids: Keys to Nutritional Health 2016:285–291. DOI: 10.1007/978-3-319-40458-5_23.
Burdge GC, Calder PC. Introduction to fatty acids and lipids. World Rev Nutr Diet 2015;112:1–16. DOI: 10.1159/000365423.
Calder PC. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem Soc Trans 2017;45(5):1105–1115. DOI: 10.1042/BST20160474.
Lattka E, Illig T, Koletzko B, et al. Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol 2010;21(1):64–69. DOI: 10.1097/MOL.0b013e3283327ca8.
Sun D, Krishnan A, Zaman K, et al. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice. J Bone Miner Res 2003;18(7):1206–1216. DOI: 10.1359/jbmr.2003.18.7.1206.
Moon HJ, Kim TH, Byun DW, et al. Positive correlation between erythrocyte levels of n–3 polyunsaturated fatty acids and bone mass in postmenopausal Korean women with osteoporosis. Ann Nutr Metab 2012;60(2):146–153. DOI: 10.1159/000337302.
Nakanishi A, Iitsuka N, Tsukamoto I. Fish oil suppresses bone resorption by inhibiting osteoclastogenesis through decreased expression of M-CSF, PU. 1, MITF and RANK in ovariectomized rats. Mol Med Rep 2013;7(6):1896–1903. DOI: 10.3892/mmr.2013.1446.
Casado-Díaz A, Santiago-Mora R, Dorado G, et al. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: Potential implication in osteoporosis. Osteoporosis Int 2013;24:1647–1661. DOI: 10.1007/s00198-012-2138-z.
Levental KR, Surma MA, Skinkle AD, et al. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Sci Adv 2017;3(11):eaao1193. DOI: 10.1126/sciadv.aao1193.
Kim HK, Park SJ, Kim JH, et al. Nanoemulsion-eicosapentaenoic acid enhanced alkaline phosphatase, calcium contents, and surface molecules expression during osteogenesis using mouse multipotent bone marrow stromal cells. J Nanosci Nanotechnol 2010;10(5): 3284–3288. DOI: 10.1166/jnn.2010.2234.
Koren N, Simsa-Maziel S, Shahar R, et al. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality. J Nutr Biochem 2014;25(6):623–633. DOI: 10.1016/j.jnutbio.2014. 01.012.
Gao B, Huang Q, Jie Q, et al. 2015. GPR120: A bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMMSCs. Scientific Reports 5:14080. DOI: 10.1038/srep14080.
Kasonga AE, Kruger MC, Coetzee M. Free fatty acid receptor 4-b-arrestin 2 pathway mediates the effects of different classes of unsaturated fatty acids in osteoclasts and osteoblasts. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864(3):281–289.1864. DOI: 10.1016/j.bbalip.2018.12.009.
Nakanishi A, Tsukamoto I. N-3 polyunsaturated fatty acids stimulate osteoclastogenesis through PPARc-mediated enhancement of c-Fos expression and suppress osteoclastogenesis through PPARc-dependent inhibition of NFkB activation. J Nutr Biochem 2015;26(11):1317–1327. DOI: 10.1016/j.jnutbio.2015.06.007.
Bonnet N, Somm E, Rosen CJ, et al. Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids. Bone 2014;68:100–107. DOI: 10.1016/j.bone.2014.07.024.
Watkins BA, Hutchins H, Li Y, et al. The endocannabinoid signaling system: A marriage of PUFA and musculoskeletal health. J Nutr Biochem 2010;21(12):1141–1152. DOI: 10.1016/j.jnutbio.2010.04.011.
Chen Y, Cao H, Sun D, et al. Endogenous production of n-3 polyunsaturated fatty acids promotes fracture healing in mice. Journal of health engineering 2017;(1):3571267. DOI: 10.1155/2017/3571267.
Orchard TS, Cauley JA, Frank GC, et al. Fatty acid consumption and risk of fracture in the Women's Health Initiative. Am J Clin Nutr 2010;92(6):1452–1460. DOI: 10.3945/ajcn.2010.29955.
Orchard TS, Pan X, Cheek F, et al. A systematic review of omega-3 fatty acids and osteoporosis. Br J Nutr 2012;107Suppl 2(02):S253–S260. DOI: 10.1017/S0007114512001638.
Hogstrom M, Nordstrom P, Nordstrom A. n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 2007;85(3):803–807. DOI: 10.1093/ajcn/85.3.803.
Weiss LA, Barrett-Connor E, von Muhlen D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 2005;81:934–938. DOI: 10.1093/ajcn/81.4.934.
Kruger MC, Coetzer H, de Winter R, et al. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging (Milano) 1998;10(5):385–394. DOI: 10.1007/BF03339885.
Griel AE, Kris-Etherton PM, Hilpert KF, et al. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr J 2007;6:2. DOI: 10.1186/1475-2891-6-2.
Pischon T, Hankinson SE, Hotamisligil GS, et al. Habitual dietary intake of n23 and n26 fatty acids in relation to inflammatory markers among US men and women. Circulation 2003;108:155–160. DOI: 10.1161/01.CIR.0000079224.46084.C2.
Moon HJ, Kim TH, Byun DW, et al. Positive correlation between erythrocyte levels of n-3 polyunsaturated fatty acids and bone mass in postmenopausal Korean women with osteoporosis. Ann Nutr Metab 2012;60(2):146–153. DOI: 10.1159/000337302.