Journal of South Asian Federation of Obstetrics and Gynaecology

Register      Login

VOLUME 16 , ISSUE S2 ( August, 2024 ) > List of Articles

REVIEW ARTICLE

Elucidating the Relationship between Single-nucleotide Polymorphisms and Impaired Fertility

Shreya Nautiyal, Girish Sharma, M Gouri Devi

Keywords : Infertility, In vitro fertilization, Single-nucleotide polymorphism

Citation Information :

DOI: 10.5005/jp-journals-10006-2479

License: CC BY-NC 4.0

Published Online: 02-09-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Infertility is a prevalent health issue which affects ~15–20% of couples worldwide. Almost one-half of idiopathic infertility cases have been accepted to be caused by genetic basis, yet the basic causes are obscure. The reason for the present review is to comprehend and acquire information on the current status of examination on the genetics of females and its relationship with infertility. This article reviews the effects of single-nucleotide polymorphisms (SNPs) present in follicle-stimulating hormone receptor (FSHR), luteinizing hormone/choriogonadotropin receptor (LHCGR), luteinizing hormone subunit beta (LHβ), anti-Mullerian hormone receptor (AMHR), and estrogen receptor (ESR) on female infertility. To investigate the strength of the relationship between SNPs and infertility, 74 articles were studied from multiple sources such as PubMed, Medline, and Google Scholar. Further more, a conclusion can be drawn that SNPs do have an impact on infertility irrespective of ethnicity and more research needs to be done in this area to understand the correlation of polymorphisms and infertility in order to benefit the population affected by it.


PDF Share
  1. Themmen APN, Huhtaniemi IT. Mutations of gonadotropins and gonadotropin receptors: Elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 2000;21(5):551–583. DOI: 10.1210/edrv.21.5.0409.
  2. Singhasena W, Pantasri T, Piromlertamorn W, et al. Follicle-stimulating hormone receptor gene polymorphism in chronic anovulatory women, with or without polycystic ovary syndrome: A cross-sectional study. Reprod Biol Endocrinol 2014;12(86):1–14. DOI: 10.1186/1477-7827-12-86.
  3. Pierce JG, Parsons TF. Glycoprotein hormones: Structure and function. Annu Rev Biochem 1981;50:465–495. DOI: 10.1146/annurev.bi.50.070181.002341.
  4. Weerapana E, Imperiali B. Asparagine-linked protein glycosylation: From eukaryotic to prokaryotic systems. Glycobiology 2006;16(6): 91R–101R. DOI: 10.1093/glycob/cwj099.
  5. Loutradis D, Patsoula E, Minas V, et al. FSH receptor gene polymorphisms have a role for different ovarian response to stimulation in patients entering IVF/ICSI-ET programs. J Assist Reprod Genet 2006;23(4):177–184. DOI: 10.1007/s10815-005-9015-z.
  6. Anagnostou E, Mavrogianni D, Prifti IN, et al. The role of FSHR SNPs and AMH in follicular fluid and serum in ovarian response during COS: A pilot study. Int J Reprod Med 2021;9(1):1–19. DOI: 10.1155/2021/8685158.
  7. Gharesi-Fard B, Ghasemi Z, Shakeri S, et al. The frequency of follicle stimulating hormone receptor gene polymorphisms in Iranian infertile men with azoospermia. Iran J Reprod Med 2015;13(11): 673–678. PMID: 26730241.
  8. Lend AK, Belousova A, Haller-Kikkatalo K, et al. Follicle-stimulating hormone receptor gene haplotypes and male infertility in Estonian population and meta-analysis. Syst Biol Reprod Med 2010;56(1): 84–90. DOI: 10.3109/19396360903456676.
  9. Song GJ, Park YS, Lee HS, et al. Mutation screening of the FSH receptor gene in infertile men. Mol Cells 2001;12(3):292–297. DOI: 10.1016/S1016-8478(23)25249-8.
  10. Zalata AA, Hassan AH, Nada HA, et al. Follicle-stimulating hormone receptor polymorphism and seminal anti-Müllerian hormone in fertile and infertile men. Andrologia 2008;40(6):392–397. DOI: 10.1111/j.1439-0272.2008.00877.x.
  11. Ahda Y, Gromoll J, Wunsch A, et al. Follicle-stimulating hormone receptor gene haplotype distribution in normozoospermic and azoospermic men. J Androl 2013;26(1):494–499. DOI: 10.2164/jandrol.04186.
  12. Balkan M, Gedik A, Akkoc H, et al. FSHR single nucleotide polymorphism frequencies in proven fathers and infertile men in southeast Turkey. J BioMed Biotechnol 2010;2010:01–05. DOI: 10.1155/2010/640318.
  13. Sudo S, Kudo M, Wada S, et al. Genetic and functional analyses of polymorphisms in the human FSH receptor gene. Mol Hum Reprod 2002;8(10):893–899. DOI: 10.1093/molehr/8.10.893.
  14. Dolfin E, Guani B, Lussiana C, et al. FSH-receptor Ala307Thr polymorphism is associated to polycystic ovary syndrome and to a higher responsiveness to exogenous FSH in Italian women. J Assist Reprod Genet 2011;28(10):925–930. DOI: 10.1007/s10815-011- 9619-4.
  15. Desai SS, Roy BS, Mahale SD. Mutations and polymorphisms in FSH receptor: Functional implications in human reproduction. Reproduction 2013;146(6):R235–R48. DOI: 10.1530/REP-13-0351.
  16. Laven JSE. Follicle stimulating hormone receptor (FSHR) polymorphisms and polycystic ovary syndrome (PCOS). Front Endocrinol (Lausanne) 2019;10(23)1–16. DOI: 10.3389/fendo.2019. 00023.
  17. Wunsch A, Ahda Y, Banaz-Yaşar F, et al. Single-nucleotide polymorphisms in the promoter region influence the expression of the human follicle-stimulating hormone receptor. Fertil Steril 2005;84(2):446–453. DOI: 10.1016/j.fertnstert.2005.02.031.
  18. Borgbo T, Sommer Kristensen L, Lindgren I, et al. Genotyping common FSHR polymorphisms based on competitive amplification of differentially melting amplicons (CADMA). J Assist Reprod Genet 2014;31(11):1427–1436. DOI: 10.1007/s10815-014-0329-6.
  19. Jun JK, Yoon JS, Ku SY, et al. Follicle-stimulating hormone receptor gene polymorphism and ovarian responses to controlled ovarian hyperstimulation for IVF-ET. J Hum Genet 2006;51(8):665–670. DOI: 10.1007/s10038-006-0005-5.
  20. Perez Mayorga M, Gromoll J, Behre HM, et al. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab 2000;85(9):3365–3369. DOI: 10.1210/jcem.85.9.6789.
  21. Behre HM, Greb RR, Mempel A, et al. Significance of a common single nucleotide polymorphism in exon 10 of the follicle-stimulating hormone (FSH) receptor gene for the ovarian response to FSH: A pharmacogenetic approach to controlled ovarian hyperstimulation. Pharmacogenet Genomics 2005;15(7):451–456. DOI: 10.1097/01.fpc.0000167330.92786.5e.
  22. Greb RR, Grieshaber K, Gromoll J, et al. A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle. J Clin Endocrinol Metab 2005;90(8): 4866–4872. DOI: 10.1210/jc.2004-2268.
  23. Daelemans C, Smits G, de Maertelaer V, et al. Prediction of severity of symptoms in iatrogenic ovarian hyperstimulation syndrome by follicle-stimulating hormone receptor Ser680Asn polymorphism. J Clin Endocrinol Metab 2004;89(12):6310–6315. DOI: 10.1210/jc.2004-1044.
  24. Sindiani AM, Batiha O, Al-Zoubi E, et al. Association of single-nucleotide polymorphisms in the ESR2 and FSHR genes with poor ovarian response in infertile Jordanian women. Clin Exp Reprod Med 2021;48(1):69–79. DOI: 10.5653/cerm.2020.03706.
  25. Simoni M, Casarini L. Mechanisms in endocrinology: Genetics of FSH action: A 2014-and-beyond view. Eur J Endocrinol 2014;170(3): R91–107. DOI: 10.1530/EJE-13-0624.
  26. Sater MS, Magdoud K, Dendana M, et al. Leutinizing hormone/choriogonadotropin receptor and follicle stimulating hormone receptor gene variants and risk of recurrent pregnancy loss: A case control study. J Meta Gene 2018;15(1):90–95. DOI: 10.1016/j.mgene.2017.12.005.
  27. Hermann BP, Heckert LL. Transcriptional regulation of the FSH receptor: New perspectives. Mol Cell Endocrinol 2007;260–262: 100–108. DOI: 10.1016/j.mce.2006.09.005.
  28. Ganesh V, Venkatesan V, Koshy T, et al. Association of estrogen, progesterone and follicle stimulating hormone receptor polymorphisms with in vitro fertilization outcomes. Syst Biol Reprod Med 2018;64(4):260–265. DOI: 10.1080/19396368.2018.1482030.
  29. Laven JS, Mulders AG, Suryandari DA, et al. Follicle-stimulating hormone receptor polymorphisms in women with normogonadotropic anovulatory infertility. Fertil Steril 2003;80(4):986–992. DOI: 10.1016/s0015-0282(03)01115-4.
  30. Overbeek A, Kuijper EA, Hendriks ML, et al. Clomiphene citrate resistance in relation to follicle-stimulating hormone receptor Ser680Ser-polymorphism in polycystic ovary syndrome. Hum Reprod 2009;24(8):2007–2013. DOI: 10.1093/humrep/dep114.
  31. Achrekar SK, Modi DN, Desai SK, et al. Follicle-stimulating hormone receptor polymorphism (Thr307Ala) is associated with variable ovarian response and ovarian hyperstimulation syndrome in Indian women. Fertil Steril 2009;91(2):432–439. DOI: 10.1016/j.fertnstert.2007.11.093.
  32. Kaviani M, Ghaderian SMH, Arefi S, et al. Role of FSHR rs6165 and ESR2 rs4986938 polymorphisms in ovarian stimulation of Iranian women who underwent assisted reproduction treatment. Hum Antibodies 2017;26(3):121–126. DOI: 10.3233/HAB-170329.
  33. Kim JJ, Choi YM, Hong MA, et al. FSH receptor gene p. Thr307Ala and p. Asn680Ser polymorphisms are associated with the risk of polycystic ovary syndrome. J Assist Reprod Genet 2017;34(8):1087–1093. DOI: 10.1007/s10815-017-0953-z.
  34. Alviggi C, Conforti A, Santi D, et al. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: A systematic review and meta-analysis. Hum Reprod Update 2018;24(5):599–514. DOI: 10.1093/humupd/dmy019.
  35. Bonyadi K, Damavandi E, Chibine H, et al. Association of FSH receptor promoter's polymorphisms with IVF-failure in Iranian women. Int J Rep Contracept Obstet Gynecol 2017;6(9):3760–3764. DOI: 10.18203/2320-1770.ijrcog20174021.
  36. Ascoli M, Fanelli F, Segaloff DL. The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 2002;23(2):141–174. DOI: 10.1210/edrv.23.2.0462.
  37. Jeppesen JV, Kristensen SG, Nielsen ME, et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab 2012;97(8): E1524–E1531. DOI: 10.1210/jc.2012-1427.
  38. Maman E, Yung Y, Kedem A, et al. High expression of luteinizing hormone receptors messenger RNA by human cumulus granulosa cells is in correlation with decreased fertilization. Fertil Steril 2012;97(3):592–598. DOI: 10.1016/j.fertnstert.2011.12.027.
  39. Mahmoud STM, Abdul Kareem A. Alkazaz, et al. The impact of LHR gene polymorphism rs12470652 in Women with POF and Nihh, a case-control study. Iraqi J Sci 2020;3(1):508–516. DOI: 10.24996/ijs.2020.61.3.6.
  40. Schmitz CR, Souza CA, Genro VK, et al. LH (Trp8Arg/Ile15Thr), LHR (insLQ) and FSHR (Asn680Ser) polymorphisms genotypic prevalence in women with endometriosis and infertility. J Assist Reprod Genet 2015;32(6):991–997. DOI: 10.1007/s10815-015-0477-3.
  41. Yılmaz E, Ozdemir A, Onal M, et al. Association between LHβR gene variant and infertility. International J Clin Endocrinol Metab 2020;6(1):01–04.
  42. Liu N, Ma Y, Wang S, et al. Association of the genetic variants of luteinizing hormone, luteinizing hormone receptor and polycystic ovary syndrome. Reprod Biol Endocrinol 2012;10(36):1–14. DOI: 10.1186/1477-7827-10-36.
  43. Deswal R, Nanda S, Dang AS. Association of Luteinizing hormone and LH receptor gene polymorphism with susceptibility of Polycystic ovary syndrome. Syst Biol Reprod Med 2019;65(5):400–408. DOI: 10.1080/19396368.2019.1595217.
  44. Ga R, Cheemakurthi R, Kalagara M, et al. Effect of LHCGR Gene Polymorphism (rs2293275) on LH Supplementation Protocol Outcomes in Second IVF Cycles: A Retrospective Study. Front Endocrinol (Lausanne) 2021;12(6281):1–16. DOI: 10.3389/fendo.2021. 628169.
  45. Lindgren I, Bååth M, Uvebrant K, et al. Combined assessment of polymorphisms in the LHCGR and FSHR genes predict chance of pregnancy after in vitro fertilization. Hum Reprod 2016;31(3):672–683. DOI: 10.1093/humrep/dev342.
  46. Zou J, Wu D, Liu Y, et al. Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: A meta-analysis. Gynecol Endocrinol 2019;35(1):81–85. DOI: 10.1080/09513590.2018.1498834.
  47. El-Shal AS, Zidan HE, Rashad NM, et al. Association between genes encoding components of the Leutinizing hormone/Luteinizing hormone-choriogonadotrophin receptor pathway and polycystic ovary syndrome in Egyptian women. IUBMB Life 2016;68(1):23–36. DOI: 10.1002/iub.1457.
  48. Batista MC, Duarte Ede F, Borba MD, et al. Trp28Arg/Ile35Thr LHB gene variants are associated with elevated testosterone levels in women with polycystic ovary syndrome. Gene 2014;550(1):68–73. DOI: 10.1016/j.gene.2014.08.017.
  49. Javadi-Arjmand M, Damavandi E, Choobineh H, et al. Evaluation of the prevalence of exons 1 and 10 polymorphisms of LHCGR gene and its relationship with IVF success. J Reprod Infertil 2019;20(4):218–224. PMID: 31897388.
  50. Weenen C, Laven JS, Von Bergh AR, et al. Anti-Müllerian hormone expression pattern in the human ovary: Potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 2004;10(2): 77–83. DOI: 10.1093/molehr/gah015.
  51. Iliodromiti S, Anderson RA, Nelson SM. Technical and performance characteristics of anti-Müllerian hormone and antral follicle count as biomarkers of ovarian response. Hum Reprod Update 2015;21(6): 698–610. DOI: 10.1093/humupd/dmu062.
  52. Broer SL, Dólleman M, Opmeer BC, et al. AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: A meta-analysis. Hum Reprod Update 2011;17(1):46–54. DOI: 10.1093/humupd/dmq034.
  53. Wu CH, Yang SF, Tsao HM, et al. Anti-Müllerian hormone gene polymorphism is associated with clinical pregnancy of fresh IVF Cycles. Int J Environ Res Public Health 2019;16(5):841–858. DOI: 10.3390/ijerph16050841.
  54. Kevenaar ME, Themmen AP, Laven JS, et al. Anti-Müllerian hormone and anti-Müllerian hormone type II receptor polymorphisms are associated with follicular phase estradiol levels in normo-ovulatory women. Hum Reprod 2007;22(6):1547–1554. DOI: 10.1093/humrep/dem036.
  55. Karagiorga I, Partsinevelos GA, Mavrogianni D, et al. Single nucleotide polymorphisms in the Anti-Müllerian hormone (AMH Ile(49)Ser) and Anti-Müllerian hormone type II receptor (AMHRII -482 A>G) as genetic markers in assisted reproduction technology. J Assist Reprod Genet 2015;32(3):357–367. DOI: 10.1007/s10815-014-0403-0.
  56. Peluso C, Fonseca FL, Gastaldo GG, et al. AMH and AMHR2 polymorphisms and AMH serum level can predict assisted reproduction outcomes: A cross-sectional study. Cell Physiol Biochem 2015;35(4):1401–1412. DOI: 10.1159/000373961.
  57. Cerra C, Newman WG, Tohlob D, et al. AMH type II receptor and AMH gene polymorphisms are not associated with ovarian reserve, response, or outcomes in ovarian stimulation. J Assist Reprod Genet 2016;33(8):1085–1091. DOI: 10.1007/s10815-016-0711-7.
  58. Yoshida Y, Yamashita Y, Saito N, et al. Analyzing the possible involvement of anti-Müllerian hormone and anti-Müllerian hormone receptor II single nucleotide polymorphism in infertility. J Assist Reprod Genet 2014;31(2):163–168. DOI: 10.1007/s10815-013- 0134-7.
  59. Moolhuijsen LME, Louwers YV, McLuskey A, et al. Association between an AMH promoter polymorphism and serum AMH levels in PCOS patients. Hum Reprod 2022;37(7):1544–1556. DOI: 10.1093/humrep/deac082.
  60. Verdiesen RMG, van der Schouw YT, van Gils CH, et al. Genome-wide association study meta-analysis identifies three novel loci for circulating anti-Müllerian hormone levels in women. Human Reproduction 2022;37(5):1069–1082. DOI: 10.1093/humrep/deac028.
  61. Chedrese PJ. Reproductive Endocrinology: A Molecular Approach. Springer US. 2009.
  62. Saunders PT. Does estrogen receptor beta play a significant role in human reproduction? Trends Endocrinol Metab 2005;16(5):222–227. DOI: 10.1016/j.tem.2005.05.006.
  63. Filicori M, Cognigni GE, Taraborrelli S, et al. Luteinizing hormone activity supplementation enhances follicle-stimulating hormone efficacy and improves ovulation induction outcome. J Clin Endocrinol Metab 1999;84(8):2659–2563. DOI: 10.1210/jcem.84.8.5884.
  64. Ayvaz OU, Ekmekçi A, Baltaci V, et al. Evaluation of in vitro fertilization parameters and estrogen receptor alpha gene polymorphisms for women with unexplained infertility. J Assist Reprod Genet 2009;26 (9–10):503–510. DOI: 10.1007/s10815-009-9354-2.
  65. Swaminathan M, Ganesh V, Koshy T, et al. A study on the role of estrogen receptor gene polymorphisms in female infertility. Genet Test Mol Biomarkers 2016;20(11):692–695. DOI: 10.1089/gtmb.2016.0097.
  66. Hsieh YY, Wang YK, Chang CC, et al. Estrogen receptor alpha-351 XbaI*G and -397 PvuII*C-related genotypes and alleles are associated with higher susceptibilities of endometriosis and leiomyoma. Molecular Human Reproduction 2006;13(1):117–122. DOI: 10.1093/molehr/gal099.
  67. Zhao L, Gu C, Huang K, et al. Association between oestrogen receptor alpha (ESR1) gene polymorphisms and endometriosis: A meta-analysis of 24 case-control studies. Reprod Biomed Online 2016;33(3):335–349. DOI: 10.1016/j.rbmo.2016.06.003.
  68. Xie J, Wang S, He B, et al. Association of estrogen receptor alpha and interleukin-10 gene polymorphisms with endometriosis in a Chinese population. Fertil Steril 2009;92(1):54–60. DOI: 10.1016/j.fertnstert.2008.04.069.
  69. Bahia W, Soltani I, Haddad A, et al. Association of genetic variants in estrogen receptor (ESR)1 and ESR2 with susceptibility to recurrent pregnancy loss in Tunisian women: A case control study. Gene 2020;736(1):01–07. DOI: 10.1016/j.gene.2020.144406.
  70. Jalilvand A, Yari K, Heydarpour F. Role of Polymorphisms on the Recurrent Pregnancy Loss: A Systematic Review, Meta-analysis and Bioinformatic Analysis. Gene 2022;844(1):1–10. DOI: 10.1016/j.gene.2022.146804.
  71. Mahdavipour M, Idali F, Zarei S, et al. Investigation on estrogen receptor alpha gene polymorphisms in Iranian women with recurrent pregnancy loss. Iran J Reprod Med 2014;12(6):395–400. PMID: 25071847.
  72. Paskulin DD, Cunha-Filho JS, Paskulin LD, et al. ESR1 rs9340799 is associated with endometriosis-related infertility and in vitro fertilization failure. Dis Markers 2013;35(6):907–913. DOI: 10.1155/2013/796290.
  73. Asgari R. Role of ESR1 PvuII T/C variant in female reproductive process: A review. Central Asian Journal of Medical and Pharmaceutical Sciences Innovation 2021;1(1):22–27. DOI: 10.22034/CAJMPSI.2021. 01.04.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.