An Update on Gut Microbiome and Postmenopausal Health with Clinical Implications
Srinidhi Rai, Preethika Anand
Keywords :
Cancer, Estrobolome, Gut microbiome, Obesity, Osteoporosis, Postmenopausal women, Type 2 diabetes
Citation Information :
Rai S, Anand P. An Update on Gut Microbiome and Postmenopausal Health with Clinical Implications. J South Asian Feder Obs Gynae 2024; 16 (2):150-155.
The decline of estrogen levels in postmenopause triggers significant health changes. Recent insights reveal a dynamic link between gut microbiome and estrogen, suggesting combined influence on postmenopausal health care. Reduced gut microbiome diversity is a sign of intestinal dysbiosis, linked with aging, western lifestyle, and a number of illnesses conditions. Several physiological reactions are changed when dysbiosis develops in postmenopausal state which contributes to the illness states obesity, metabolic syndrome, cancer, osteoporosis to name a few. Investigating the interplay between gut microbiota and estrogen deficiency holds promise for enhancing postmenopausal well-being and health outcomes.
Santoro N, Roeca C, Peters BA, et al. The menopause transition: Signs, symptoms, and management options. J Clin Endocrinol Metab 2021;106(1):1–15. DOI: 10.1210/clinem/dgaa764.
Sussman M, Trocio J, Best C, et al. Prevalence of menopausal symptoms among mid-life women: Findings from electronic medical records. BMC Womens Health 2015;15:58. DOI: 10.1186/s12905-015-0217-y.
Yisma E, Eshetu N, Ly S, et al. Prevalence and severity of menopause symptoms among perimenopausal and postmenopausal women aged 30-49 years in Gulele sub-city of Addis Ababa, Ethiopia. BMC women's Health 2017;(17):1–8. DOI:10.1186/s12905-017-0484-x.
Goedert JJ, Jones G, Hua X, et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 2015;107(8):1–5. DOI: 10.1093/jnci/djv147.
Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol 2015;31(1):69–75. DOI: 10.1097/MOG.0000000000000139.
Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med 2018;24(4):392–400. DOI: 10.1038/nm.4517.
Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem. Front Microbiol 2016;7:455. DOI: 10.3389/fmicb.2016.00455.
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013;13(11):800–812. DOI: 10.1038/nrc3610.
van den Munckhof ICL, Kurilshikov A, Ter Horst R, et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: A systematic review of human studies. Obes Rev 2018;19(12):1719–1734. DOI: 10.1111/obr.12750.
Kwa M, Plottel CS, Blaser MJ, et al. The intestinal microbiome and estrogen receptor–positive female breast cancer. J Natl Cancer Inst 2016;108(8):djw029. DOI: 10.1093/jnci/djw029.
Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017;103:45–53. DOI: 10.1016/j.maturitas.2017.06.025.
Xiao L, Sonne SB, Feng Q, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome 2017;5(1):1–12. DOI: 10.1186/s40168-017-0258-6.
Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol 2009;587(Pt 17):4153–4158. DOI: 10.1113/jphysiol.2009.174136.
Acharya KD, Noh HL, Graham ME, et al. Distinct changes in gut microbiota are associated with estradiol-mediated protection from diet-induced obesity in female mice. Metabolites 2021;11(8):499. DOI: 10.3390/metabo11080499.
Łoniewski I, Szulińska M, Kaczmarczyk M, et al. Analysis of correlations between gut microbiota, stool short chain fatty acids, calprotectin and cardiometabolic risk factors in postmenopausal women with obesity: A cross-sectional study. J Transl Med 2022; 20(1):1–6. DOI: 10.1186/s12967-022-03801-0.
Mayneris-Perxachs J, Arnoriaga-Rodríguez M, Luque-Córdoba D, et al. Gut microbiota steroid sexual dimorphism and its impact on gonadal steroids: influences of obesity and menopausal status. Microbiome 2020;8(1):1–5. DOI: 10.1186/s40168-020-00913-x.
Santos-Marcos JA, Rangel-Zuñiga OA, Jimenez-Lucena R, et al. Influence of gender and menopausal status on gut microbiota. Maturitas 2018;116:43–53. DOI: 10.1016/j.maturitas.2018.07.008.
Frampton J, Murphy KG, Frost G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2020;2(9):840–848. DOI: 10.1038/s42255-020-0188-7.
Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008;105(43):16767–16772. DOI: 10.1073/pnas.0808567105.
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012;61(2):364–371. DOI: 10.2337/db11-1019.
Ohira H, Fujioka Y, Katagiri C, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb 2013;20(5):425–442. DOI: 10.5551/jat.15065.
Blasco-Baque V, Serino M, Vergnes JN, et al. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS) receptor signaling: Protective action of estrogens. PLoS One 2012;7(11):e48220. DOI: 10.1371/journal.pone.0048220.
Murphy AJ, Guyre PM, Pioli PA. Estradiol suppresses NF-kappa B activation through coordinated regulation of let-7a and miR-125b in primary human macrophages. J Immunol 2010;184(9):5029–5037. DOI: 10.4049/jimmunol.0903463.
Singh V, Park YJ, Lee G, et al. Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 2022;12(1):6. DOI: 10.1080/10408398.2022.2076651.
Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 2010;31(3):266–300. DOI: 10.1210/er.2009-0024.
Quach D, Britton RA. Gut Microbiota and Bone Health. Adv Exp Med Biol 2017;1033:47–58. DOI: 10.1007/978-3-319-66653-2_4.
Quigley EM. Gut bacteria in health and disease. Gastroenterol Hepatol 2013;9:560–569. PMID: 24729765.
Yang LC, Wu JB, Lu TJ, et al. The prebiotic effect of Anoectochilus formosanus and its consequences on bone health. Br J Nutr 2013;109(10):1779–1788. DOI: 10.1017/S0007114512003777.
Lucas S, Omata Y, Hofmann J, et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 2018;9(1):55. DOI: 10.1038/s41467-017-02490-4.
Li JY, Chassaing B, Tyagi AM, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 2016;126(6):2049–2063. DOI: 10.1172/JCI86062.
Ohlsson C, Engdahl C, Fåk F, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 2014;9(3):e92368. DOI: 10.1371/journal.pone.0092368.
Britton RA, Irwin R, Quach D, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 2014;229(11):1822–1830. DOI: 10.1002/jcp.24636.
Xu X, Jia X, Mo L, et al. Intestinal microbiota: A potential target for the treatment of postmenopausal osteoporosis. Bone Res 2017; 5:1–8. DOI: 10.1038/boneres.2017.46.
Sjögren K, Engdahl C, Henning P, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res 2012;27(6):1357–1367. DOI: 10.1002/jbmr.1588.
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424. DOI: 10.3322/caac.21492.
Sathishkumar K, N V, Badwe RA, et al. Trends in breast and cervical cancer in India under National Cancer Registry Programme: An Age-Period-Cohort analysis. Cancer Epidemiol 2021;74:1–10. DOI: 10.1016/j.canep.2021.101982.
Maheshwari A, Kumar N, Mahantshetty U. Gynecological cancers: A summary of published Indian data. South Asian J Cancer 2016;5(3):112–120. DOI: 10.4103/2278-330X.187575.
Mehrotra R, Yadav K. Breast cancer in India: Present scenario and the challenges ahead. World J Clin Oncol 2022;13(3):209–218. DOI: 10.5306/wjco.v13.i3.209.
Kaarthigeyan K. Cervical cancer in India and HPV vaccination. Indian J Med Paediatr Oncol 2012;33(1):7–12. DOI: 10.4103/0971-5851. 96961.
Yabroff KR, Lund J, Kepka D, et al. Economic burden of cancer in the United States: Estimates, projections, and future research. Cancer Epidemiol Biomarkers Prev 2011;20(10):2006–2014. DOI: 10.1158/1055-9965.EPI-11-0650.
Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: A new clinical frontier. Gut 2016;65(2):330–339. DOI: 10.1136/gutjnl-2015-309990.
Han M, Wang N, Han W, et al. Gut microbes in gynecologic cancers: Causes or biomarkers and therapeutic potential. Front Oncol 2022;12:902695. DOI: 10.3389/fonc.2022.902695.
Alpuim Costa D, Nobre JG, Batista MV, et al. Human microbiota and breast cancer—is there any relevant link?—a literature review and new horizons toward personalised medicine. Front Microbiol 2021;(12):584332. DOI: 10.3389/fmicb.2021.584332.
Sipos A, Ujlaki G, Mikó E, et al. The role of the microbiome in ovarian cancer: Mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021;27(1):33. DOI: 10.1186/s10020-021-00295-2.
Wang Q, Zhao L, Han L, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res 2020;13(8):1–13. DOI: 10.3892/or.2017.5533.
Park GB, Chung YH, Kim D. Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells. Oncol Rep 2017;37(5):3137–3145. DOI: 10.3892/or.2017.5533.
Wanderley CW, Colón DF, Luiz JPM, et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res 2018;78(20):5891–5900. DOI: 10.1158/0008-5472.CAN-17-3480.
Zheng L, Lin Y, Lu S, et al. Biogenesis, transport and remodeling of lysophospholipids in Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017;1862(11):1404–1413. DOI: 10.1016/j.bbalip.2016.11.015.
Lee Z, Swaby RF, Liang Y, et al. Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer. Cancer Res 2006;66(5):2740–2748. DOI: 10.1158/0008-5472.CAN-05-2947.
Wang Z, Wang Q, Zhao J, et al. Altered diversity and composition of the gut microbiome in patients with cervical cancer. AMB Express 2019;9(1):1–9. DOI: 10.1016%2Fj.bbrc.2015.12.083.
Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013;339(6116):211–214. DOI: 10.1126/science.1227166.
Larsen HM, Borre M, Christensen P, et al. Clinical evaluation and treatment of chronic bowel symptoms following cancer in the colon and pelvic organs. Acta Oncol 2019;58(5):776–781. DOI: 10.1080/0284186X.2018.1562211.
Lin UH, Cheng Y, Park H, et al. Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and Caco-2 human colon cancer cells. Sci Rep 2017;7(1):1–12. DOI: 10.1126%2Fscience.1227166.
Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 2016;469(4):967–977. DOI: 10.1016/j.bbrc.2015.12.083.