Journal of South Asian Federation of Obstetrics and Gynaecology

Register      Login

VOLUME 15 , ISSUE 1 ( January-February, 2023 ) > List of Articles

REVIEW ARTICLE

Advances in Neuroendocrine Research on Polycystic Ovary Syndrome: New Hope for Treatment Decoding the Link between Hormones and the Brain

Juhi Srivastava, Priyankur Roy

Keywords : PCOS etiology neuroendocrine, Polycystic ovarian syndrome

Citation Information : Srivastava J, Roy P. Advances in Neuroendocrine Research on Polycystic Ovary Syndrome: New Hope for Treatment Decoding the Link between Hormones and the Brain. J South Asian Feder Obs Gynae 2023; 15 (1):114-119.

DOI: 10.5005/jp-journals-10006-2195

License: CC BY-NC 4.0

Published Online: 19-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Introduction: The etiopathogenesis of polycystic ovary syndrome (PCOS) is multifactorial. In healthy women, neurokinin B (NKB) controls the release of gonadotropins, the growth of follicles, and the time of ovulation. Materials and methods: The regulation of estrogen-negative feedback, which has been demonstrated to be changed in PCOS, is influenced by NKB and kisspeptin signaling. Results and Conclusion: Disruption in NKB secretion can influence the emergence of PCOS. In PCOS women, suppressing the stimulatory effects of kisspeptin by certain receptor antagonists and lowering GnRH production may be therapeutic targets. Kisspeptin antagonists have not yet been employed in this indication, however, NKB antagonists have been extensively studied in this setting.


PDF Share
  1. Dunaif A, Givens JR, Haseltine FP, et al. Polycystic Ovary Syndrome. Boston (MA): Blackwell Scientific Publications; 1992.
  2. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long term health risks related to polycystic ovary syndrome. Fertil Steril 2004;81(1):19–25. DOI: 10.1016/j.fertnstert.2003.10.004.
  3. Azziz R, Carmina E, Dewailly D, et al. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An Androgen Excess Society guideline. Androgen Excess Society. J Clin Endocrinol Metab 2006;91(11): 4237–4245.
  4. Dunaif A. Insulin resistance and the polycystic ovary syndrome: Mechanism and implications for pathogenesis. Endocr Rev 1997;18:774–800.
  5. Azziz R, Woods KS, Reyna R, et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004;89(6):2745–2749. DOI: 10.1210/jc.2003-032046.
  6. Broekmans FJ, Knauff EA, Valkenburg O, et al. PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors. BJOG 2006;113(10):1210–1217. DOI: 10.1111/j.1471-0528.2006.01008.x.
  7. Taylor HS, Pal L, Seli E. Speroff's Clinical Gynecologic Endocrinology and Infertility. 9th ed. Department of Obstetrics, Gynecology and reproductive Sciences, Yale School of Medicine: New Haven, CT, USA; 2019.
  8. Franks S, McCarthy MI, Hardy K. Development of polycystic ovary syndrome: Involvement of genetic and environmental factors. Int J Androl 2006;29(1):278–285. DOI: 10.1111/j.1365-2605.2005.00623.x.
  9. Diamanti-Kandarakis E, Piperi C, Korkolopoulou P, et al. Accumulation of dietary glycotoxins in the reproductive system of normal female rats. J Mol Med 2007;85(12):1413–1420. DOI: 10.1007/s00109-007- 0246-6.
  10. Conway G, Dewailly D, Diamanti-Kandarakis E, et al. The polycystic ovary syndrome: A position statement from the European Society of Endocrinology. Eur. J. Endocrinol 2014;171(4):P1–P29. DOI: 10.1530/EJE-14-0253.
  11. Gonzalez F, Hatala DA, Speroff L. Adrenal and ovarian steroid hormone responses to gonadotropin-releasing hormone agonist treatment in polycystic ovary syndrome. Am J Obstet Gynecol 1991;165:535–545. DOI: 10.1016/0002-9378(91)90280-5.
  12. Wildt L, Hausler A, Marshall G, et al. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 1981;109(2):376–385. DOI: 10.1210/endo-109-2-376.
  13. Speroff L, Vande Wiele RL. Regulation of the human menstrual cycle. Am J Obstet Gynecol. 1971;109:234–47. [PubMed] [Google Scholar].
  14. Naftolin F, Tolis G. Neuroendocrine regulation of the menstrual cycle. Clin Obstet Gynecol 1978;21(1):17–29. DOI: 10.1097/00003081-197803000-00003.
  15. Azziz R. Polycystic ovary syndrome. Obstet Gynecol 2018;132: 321–336. DOI: 10.1097/AOG.0000000000002698.
  16. De Leo V, Musacchio MC, Cappelli V, et al. Genetic, hormonal and metabolic aspects of PCOS: An update. Reprod Biol Endocrinol 2016;14:1–17. DOI: 10.1186/s12958-016-0173-x.
  17. Dewailly D, Robin G, Peigne M, et al. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update 2016;22(6):709–724. DOI: 10.1093/humupd/dmw027.
  18. Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update 2008;14(4):367–378. DOI: 10.1093/humupd/dmn015.
  19. Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin Endocrinol 2018;89(3):251–268. DOI: 10.1111/cen.13795.
  20. Matsuda F, Nakatsukasa K, Suetomi Y, et al. The luteinising hormone surge-generating system is functional in male goats as in females: Involvement of kisspeptin neurones in the medial preoptic area. J Neuroendocrinol 2015;27(1):57–65. DOI: 10.1111/jne.12235.
  21. Coyle C, Campbell RE. Pathological pulses in PCOS. Mol Cell Endocrinol 2019;498:110561. DOI: 10.1016/j.mce.2019.110561.
  22. Tang R, Ding X, Zhu J. Kisspeptin and polycystic ovary syndrome. Front Endocrinol 2019;10:298. DOI: 10.3389/fendo.2019.00298.
  23. Pérez-López FR, Ornat L, López-Baena MT, et al. Circulating kisspeptin and anti-müllerian hormone levels, and insulin resistance in women with polycystic ovary syndrome: A systematic review, meta-analysis, and meta-regression. Eur J Obstet Gynecol Reprod Biol 2021;260: 85–98. DOI: 10.1016/j.ejogrb.2021.03.007.
  24. Katulski K, Podfigurna A, Czyzyk A, et al. Kisspeptin and LH pulsatile temporal coupling in PCOS patients. Endocrine 2018;61(1):149–157. DOI: 10.1007/s12020-018-1609-1.
  25. Wang T, Han S, Tian W, et al. Effects of kisspeptin on pathogenesis and energy metabolism in polycystic ovarian syndrome (PCOS). Gynecol Endocrinol 2019;35(9):807–810. DOI: 10.1080/09513590. 2019.1597343.
  26. Osuka S, Iwase A, Nakahara T, et al. Kisspeptin in the hypothalamus of 2 rat models of polycystic ovary syndrome. Endocrinology 2017;158(2):367–377. DOI: 10.1210/en.2016-1333.
  27. Blasco V, Pinto FM, Fernández-Atucha A, et al. Altered expression of the kisspeptin/KISS1R and neurokinin B/NK3R systems in mural granulosa and cumulus cells of patients with polycystic ovarian syndrome. J Assist Reprod Genet 2019;36(1):113–120. DOI: 10.1007/s10815-018-1338-7.
  28. Cortés ME, Carrera B, Rioseco H, et al. The role of kisspeptin in the onset of puberty and in the ovulatory mechanism: A mini-review. J Pediatr Adolesc Gynecol 2015;28:286–291. DOI: 10.1016/j.jpag. 2014.09.017.
  29. Jayasena CN, Abbara A, Comninos AN, et al. Kisspeptin-54 triggers egg maturation in women undergoing in vitro fertilization. J Clin Investig 2014;124(8):3667–3677. DOI: 10.1172/JCI75730.
  30. Abbara A, Jayasena CN, Christopoulos G, et al. Efficacy of kisspeptin-54 to trigger oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS) during in vitro fertilization (IVF) therapy. J Clin Endocrinol Metab 2015;100(9):3322–3331. DOI: 10.1210/jc.2015-2332.
  31. Skorupskaite K, George JT, Veldhuis JD, et al. Kisspeptin and neurokinin B interactions in modulating gonadotropin secretion in women with polycystic ovary syndrome. Hum Reprod 2020; 35(6):1421–1431. DOI: 10.1093/humrep/deaa104.
  32. Yosten GLC, Lyu R-M, Hsueh AJ, et al. A novel reproductive peptide, phoenixin. J Neuroendocrinol 2013;25(2):206–215. DOI: 10.1111/j.1365-2826.2012.02381.x.
  33. Billert M, Kołodziejski PA, Strowski MZ, et al. Phoenixin-14 stimulates proliferation and insulin secretion in insulin producing INS-1E cells. Biochim Biophys Acta Mol Cell Res 2019;1866(12):118533. DOI: 10.1016/j.bbamcr.2019.118533.
  34. Nguyen XP, Nakamura T, Osuka S, et al. Effect of the neuropeptide phoenixin and its receptor GPR173 during folliculogenesis. Reproduction 2019;158(1):25–34. DOI: 10.1530/REP-19-0025.
  35. Kalamon N, Błaszczyk K, Szlaga A, et al. Levels of the neuropeptide phoenixin-14 and its receptor GRP173 in the hypothalamus, ovary and periovarian adipose tissue in rat model of polycystic ovary syndrome. Biochem Biophys Res Commun 2020;528(4):628–635. DOI: 10.1016/j.bbrc.2020.05.101.
  36. Altinkaya SO. Galanin and glypican-4 levels depending on metabolic and cardiovascular risk factors in patients with polycystic ovary syndrome. Arch Endocrinol Metab 2021;65(4):479–487. DOI: 10.20945/2359-3997000000340.
  37. Baranowska B, Radzikowska M, Wasilewska-Dziubińska E, et al. Neuropeptide Y, leptin, galanin and insulin in women with polycystic ovary syndrome. Gynecol Endocrinol 1999;13:344–351. DOI: 10.3109/09513599909167578.
  38. Rasmussen CB, Lindenberg S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: An observational study. Front Endocrinol 2014;5:140. DOI: 10.3389/fendo.2014.00140.
  39. Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2013;98(12):4565–4592. DOI: 10.1210/jc.2013-2350.
  40. Lamos EM, Malek R, Davis SN. GLP-1 receptor agonists in the treatment of polycystic ovary syndrome. Expert Rev Clin Pharmacol 2017;10(4):401–408. DOI: 10.1080/17512433.2017.1292125.
  41. Kawwass JF, Sanders KM, Loucks TL, et al. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome. Hum Reprod 2017;32(7):1450–1456. DOI: 10.1093/humrep/dex086.
  42. Ruddenklau A, Campbell RE. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology 2019;160(10):2230–2242. DOI: 10.1210/en.2019-00428.
  43. Chaudhari N, Dawalbhakta M, Nampoothiri L. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile. Reprod Biol Endocrinol 2018;16(1):37. DOI: 10.1186/s12958-018-0354-x.
  44. Reid R, Yen SC. Beta-endorphin stimulates the secretion of insulin and glucagon in humans. J Clin Endocrinol Metab 1981;52:592–594. DOI: 10.1210/jcem-52-3-592.
  45. Kiałka M, Milewicz T, Spałkowska M, et al. β-endorphins plasma level is higher in lean polycystic ovary syndrome (PCOS) women. Exp Clin Endocrinol Diabetes 2016;124(1):55–60. DOI: 10.1055/s-0035-1564094.
  46. Ahmed MI, Duleba AJ, El Shahat O, et al. Naltrexone treatment in clomiphene resistant women with polycystic ovary syndrome. Hum. Reprod 2008;23(11):2564–2569. DOI: 10.1093/humrep/den273.
  47. Linares R, Hernández D, Morán C, et al. Unilateral or bilateral vagotomy induces ovulation in both ovaries of rats with polycystic ovarian syndrome. Reprod. Biol. Endocrinol 2013;11:68. DOI: 10.1186/1477-7827-11-68.
  48. Linares R, Acuña XN, Rosas G, et al. Participation of the cholinergic system in the development of polycystic ovary syndrome. Molecules 2021;26(18):5506. DOI: 10.3390/molecules26185506.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.